St Nicholas' Primary

First Level

Numeracy and Mathematics Booklet

A Guide for Parents and Pupils

Introduction

What is Numeracy?

Numeracy is a skill for life, learning and work. Having well-developed numeracy skills allows young people to be more confident in social settings and enhances enjoyment in a large number of leisure activities.
Curriculum for Excellence

The better your child knows the basics, the easier it will be for him/her to make progress. It is important that your child practises these basic facts at home - namely quick recall of number bonds to 20, place value, times tables, measurement, time and money and is encouraged to use them in everyday life.

What is the purpose of the booklet?

This booklet has been produced in collaboration with cluster schools to give guidance to parents/carers on how certain common topics are taught within the Mathematics curriculum following the Curriculum for Excellence guidelines.

The mathematics experiences and outcomes are structured within three main organisers, each of which contains a number of subdivisions:

Number, Money and Measure

- Estimation and rounding
- Number and number processes
- Multiples, factors and primes
- Powers and roots
- Fractions, decimal fractions and percentages
- Money
- Time
- Measurement
- Mathematics - its impact on the world, past, present and future
- Patterns and relationships
- Expressions and equations

Shape, position and movement

- Properties of 2D shapes and 3D objects
- Angle, symmetry and transformation

Information Handling

- Data and analysis
- Ideas of chance and uncertainty

From the early stages, children should experience success in mathematics and develop the confidence to take risks, ask questions and explore alternative solutions without fear of being wrong. Children will be exploring and applying mathematical concepts to understand and solve problems, explaining their thinking and presenting their solutions to others in a variety of ways. At all stages, an emphasis on collaborative learning will encourage children to reason logically and creatively through discussion. Children will show evidence of progress through their skills in collaborating and working independently as they explore and investigate mathematical problems.

As children develop concepts within mathematics there will be continual reinforcement and revisiting in order to maintain progression.

How can this booklet be used?

If you are helping your child with homework, you can refer to the booklet to see what methods are being taught.

Why do some topics include more than one method?
In some cases the method used will be dependent on the level of difficulty of the question.

For mental calculations, children should be encouraged to develop a variety of strategies so that they can select the most appropriate method in any given situation.

There are many opportunities to develop mathematical concepts through other areas of the curriculum or contexts out with school.

Table of Contents

Topic
Page Number
Estimation and Rounding 5
Place Value 7
Addition 8
Subtraction 9
Multiplication 11
Division 12
Fractions, decimal fractions and percentages 13
Money 14
Time 15
Measurement:
Length 17
Weight 18
Volume 19
Area 20
Mathematics - its impact on the world, past, 21 present and future
Patterns and relationships 22
Expressions and equations 23
Properties of 2D shapes and 3D objects 24
Angle, symmetry and transformation 25
Data and analysis 26
Ideas of chance and uncertainty 27
Mathematical language 28
Useful resources 30

```
Addition (+)
- add
- total
- and
- plus
- sum of
```

Subtraction (-)

- less than
- take away
- minus
- subtract
- difference

Equals (=)

- is equal to
- same as
- makes
- will be

Multiplication (x)

- multiply
- times
- product
- groups of
- lots of

Division (\div)

- divide
- share
- split
- groups of

Estimation and rounding

Example 1

I have two trays, one with 12 apples and the other with 9 apples.

How many apples do I have altogether?

$$
12 \text { apples }+9 \text { apples }
$$

Both numbers are around 10 so the estimated answer will be around 20.
1 then calculate: $12+9=21$
If this is near the estimate, then my answer is likely to be accurate.

Example 2

Find the answer to $147+229$.
Estimate $147+229$ is about the same as $150+230$ which is equal to 380 .
Then calculate:

229
$+\quad 147$
376
1

This is about 380 as estimated, and is therefore likely to be correct.

Rounding

By rounding off numbers you can find approximate answers. This is useful when you need a rough answer. It is also useful when you want to check your solution as it shows you if your answer is sensible or if you are a lona way out.
Rounding to the nearest 10
When you round to the nearest ten, you don't use any units. You round the number to the nearest ten above it or below it, whichever is the nearer.

If the unit is $1,2,3$, or 4 , round down to nearest 10 .
If unit is $5,6,7,8$ or 9 , round up to nearest 10 .

Example 1

83 would be rounded to 80 .

Example 2

146 would be rounded to 150

Rounding to the nearest 100
When you round to the nearest hundred, you don't use any tens or units. You round the number to the nearest hundred above it or below it, whichever is the nearer.
140 would be rounded to 100
262 would be rounded to 300
HINT

High 5
When a number is right in the middle such as 15,25 , or 55 then the convention is to round it up to the nearest 10 . So 15 is rounded to 20,25 to 30 and so on. This is called a High 5 to help you remember when rounding.

Place Value

The value of a digit relates to its position. For example, 14, 48 and 426 all contain the digit 4 , but the place value of 4 is different in each number. In the number 14 , the 4 stands for 4 units. In 48 , the 4 stands for 4 tens and in 426 it stands for 4 hundreds.

Concrete materials are used to help children understand that the base ten number system has ten digits ($0,1,2,3,4,5,6,7,8,9$) that can be arranged to represent larger numbers.

Zero as a place holder

What is the value of the digits in the number 306? (3 hundred, 0 tens and 6 units)
Here is a number sentence. $2000+\square+40+8=2748$
What number goes \square to make this sentence true?
What number equals 3 units +5 tens +4 hundreds +6 thousands?

Addition is finding the sum of two or more numbers. It can be thought of as counting up or increasing one given number by another.

You need quick recall of number bonds to 10 and then to 20.
You should be able to:

- count on (count from the larger number, eg. 3 and 6. Count from 6 ... 7 ... 8 9
- make use of the commutative property: $16+3=19$ so $3+16=19$
- use doubles or near doubles $7+8$ is $7+7=14(+1)=15$ or $8+8$ minus 1
- make up to 10: $5+7$ is $5+5=10 \quad 10$ and 2 more gives 12
- add 10 to a single digit and a two digit number: $7+10,28+10 \ldots$.
- add a single digit to a teen number: $13+4=17$ is related to $3+4=7$
- add 9: (add 10, take away one) $4+9$ is $4+10=14$ take away $1=13$
- add three numbers by looking for pairs which make 10: $4+7+6=10+7=17$

Mental strategies

Example $58+34$

Method 1 Partitioning: add tens, add units, then add together

$$
50+30=80 \quad 8+4=12 \quad 80+12=92
$$

Method 2 Bridging: split up the number to be added into tens and units

$$
58+30=88 \quad 88+4=92
$$

Method 3 Round up to the nearest 10, then subtract
58 becomes $60+34=94$ but 60 is 2 too much, so subtract 2 :
94-2 = 92

Written Method for Addition

Add the units: 4 units plus 8 units is 12 units. 12 units is 1 ten and 2 units. Write down the units and carry the one ten. Add the tens:

The same method is used in more difficult calculations.

Subtraction is finding the difference between two numbers or 'taking away' and the answer is the number which is left.

Many steps in subtraction will be introduced:

- Subtract a single digit from a teen number: 14-3 =
- Subtract a teen number from a teen number by counting on: 18-14 = ? 'How many more from 14 up to 18'.
- Subtracting 9 (take off 10 and add 1) $26-9$ is 29-10 = $16+1=17$
- Pausing at 10: 13-5 becomes 13-3 = 10. Take off another 2 which leave 8 .
- Using related facts: 14-6 = ? 14-6=8 because 6+8+14
- Bridging 10: 27-8 becomes 27-7=20. Take off another 1 which leaves 19 .

Mental Strategies

Example Calculate 93-56

Method 1 Count on

Count on from 56 until you reach 93. This can be done in several ways, for example:

Method 2 Break up the number being subtracted, for example: subtract 50 , then subtract $6 \quad 93-50=43$

$$
43-6=37
$$

3743
93

Subtraction

- written method is called decomposition

Example 1 73-26

73 take away 26.
Subtract the units.
3 units take away 6
units
I cannot do.
Exchange one ten for
ten units.
I now have 6 tens and
13 units.
Subtract the units.
13 units take away 6

Example 2 590-386

Multiplication

Multiplication is a quick way of adding up equal groups．You may be introduced to all the tables throughout the course of Primary 2 to Primary 4 but should know the facts，and have quick recall，of the $2,3,4,5$ ，and 10 times tables．It is real worthwhile learning the tables backwards，forwards and dodging about as you can save yourself lots of time and trouble for the rest of your life！

式䒺気			为为威

4 sets of 3 stars equals 12 stars $3+3+3+3=12 \quad 4 \times 3=12$

$\triangle \triangle \triangle \triangle$	$\triangle \triangle \triangle \triangle$	$\triangle \triangle \triangle \triangle$

3 sets of 4 triangles equals 12 triangles $\quad 4+4+4=12 \quad 3 \times 4=12$

Mental Strategies：examples

$4 \times 17 \longrightarrow 4 \times 10=40 \quad 4 \times 7=28 \longrightarrow 40+28=68$
$4 \times 17 \longrightarrow$ double $17=34 \longrightarrow$ double $34=68$

$$
11 \times 30 \quad \longrightarrow \quad 10 \times 30=300 \quad \longrightarrow \quad 300+30=330
$$

Written Method

17 multiplied by 4.
4 times 7 units is 28 units．
28 is 2 tens and 8 units．
Write the 8 in the units column and carry the 2 tens．
4 times 1 ten is 4 tens plus 2 tens is 6 tens．
Multiplying by Multiples of 10

H			
	T	U	
		1	7
	1	7	0
Th	H	T	
		6	
6	2	0	

To multiply by 10 you move every digit one place to the left．

To multiply by 100 you move every digit two places to the left．

Division

Division can be thought of as repeated subtraction: "How many times can the second number be taken from the first?" It is dividing into equal groups or sharing. Division is the opposite of multiplication.

Divide 12 cans into 4 equal groups.

$$
12 \div 4=3
$$

Share 12 sweets among 3 children.

Tom
$12 \div 3=4 \quad$ They could have 4 sweets each.

Link multiplication and division facts

Language 12 shared equally between 2.
Divide 12 by 2.
12 divided by 2.
Half of 12?
Two times what makes twelve?
How many twos are in twelve?

Martin

Andrew
$4 \times 7=28$
$28 \div 4=7$
$7 \times 4=28$
$28 \div 7=4$

Divide by:
10: the answer ends in 0
5: the answer ends in 0 or 5
2: the answer ends in $0,2,4,6$, 8
or the number is even.

Written method: is developed from the use of structured materials

Example 1	$74 \div 6$	Seventy four divided by six is what?
$6 \longdiv { 7 4 }$		Six times ten is sixty, leaving 14.
- 60	6	Six times two is twelve, leaving 2.
14		Ten add two gives twelve, so there are twelve sixes in
		74 divided by 6
		Divide the tens,
Example 2	$74 \div 6$	6 times what is 7 ?
		6 times one is 6 and one left over.
12 r 2		Divide the units,
$6 \longdiv { 7 ^ { 1 4 } }$		6 times what is 14?
		6 times 2 is 12 and 2 left over. My answer is 12 r 2

Fractions

When something is divided into equal parts, each part is called a fraction. A fraction can be expressed as one

Example

Fold shapes to show a half

Example

Eighteen circles altogether.
One third of $18=6$

$\frac{1}{5}$ of 10 $=2$

$$
10 \div 5
$$

$$
\frac{1}{2}=\frac{2}{4} \quad \frac{1}{2}=\frac{4}{8}
$$

Money

Can you recognise all coins? Can you use money to pay for items and work out how much change should receive?
$100 p=£ 1$
$105 p=£ 1.05$
110p $=$
$150 p=£ 1.50$

$£ 1.10$

Fifty pence is written as 50 p or $£ 0.50$
Five pence is written as 5 p or $£ 0.05$

The decimal point separates the pounds from the pence. There are always two figures

Example: make amounts up to 10 p ...50p ...£1 ...£5
$68 p=a 50$ pence, a 10 pence, a 5 pence, a 2 pence and a 1 penny coin.
Investigate how many different combinations of coins and notes that can be used to pay for a toy costing £5.98.

Understand: $5 p+5 p+5 p+5 p=10 p+10 p=20 p$

Example: change from $£ 1$

55 p (and 5p) is 60p (and 20p) is $80 p$ (and 20p) is 100p or $£ 1$. My change is 45 p.

Example: Find the difference between two amounts

Difference $=£ 1.40$
£3 Ben has £1.40 more than Mark.

Time
Time is how long something takes

Time

Learning to tell the time can be a challenge.

Time facts to learn:
60 seconds $=1$ minute
60 minutes $=1$ hour
24 hours = 1 day
7 days = 1 week
52 weeks $=1$ year
0^{\prime} clock
the minute (long) hand points to the 12 .

quarter past

the minute (long) hand points to the 3.

half past

the minute (long) hand points to the 6 .

quarter to

the minute (long) hand points to the 9 .

Digital displays

The first number is the hour.

The numbers after the dots tells you how many minutes.

How many minutes are there between the times?

Length

Length is how far it is from one end of something to the other or the distance between two points.

long	longer	longest
short	shorter	shortest

metre	Language			
centimetre	half-centimetre	kilometre		

Units of Length
100 centimetre $(\mathrm{cm})=1$ metre (m)
1000 metres $(m)=1$ kilometre (km)

How long is your pencil?

Estimate
Is a door shorter than, longer than or about two and a half metres high?

HINT

When you are measuring the length of something look at your ruler or tape measure carefully. Make sure you start measuring from the beginning of the first centimetre.

cm				
1	2	3	4	5

Weight

We use balances or scales to find out how heavy something is. We use bathroom scales to weigh ourselves. In the post office they use scales to weigh letters and parcels.

heavy	heavier	heaviest
light	lighter	lightest

Language			
kilogram	half-kilogram	gram	weighs about / less than / more than

Units of Weight

1 kilogram (kg) $=1000$ grams (g)

$$
\frac{1}{2} \mathrm{~kg}=500 \mathrm{~g}
$$

How many apples would balance $\frac{1}{2} \mathrm{~kg}$?

Volume

The volume can be the amount a container can hold and this is sometimes called capacity.

one litre Language	half-litre \quad millilitres	estimate

Units of capacity

1 litre $(1)=1000$
millilitres (ml)
$\frac{1}{2}$ litre $(I)=500$
millilitres (ml)

Estimate
The jug holds about/more than/less than half a litre.

Can you read millilitre scales?

Area

The amount of surface covered by a two dimensional shape. The area is usually measured in square units.

square centimetres approximately	Language	half square centimetres

The find the area of this letter count the squares.

Half-square centimetre

What is the area of this triangle?

HINT

Count the squares in a systematic way, row by row or column by column.

Mathematics - its impact on the world, past and present

Ancient numbers

A long time ago, people counted using their fingers.
Symbols were invented to show the numbers.
The symbols were known as numerals.

The Egyptians used this system.

1	II	III	IIII	$\begin{aligned} & \text { III } \\ & \text { II } \end{aligned}$	III III	IIII III	IIII IIII	IIIII IIII	\bigcirc
1	2	3	4	5	6	7	8	9	10
	$\begin{gathered} \text { nกn } \\ \mathrm{n} \cap \end{gathered}$		p		$\begin{aligned} & p \rho p \\ & p \rho \end{aligned}$				
	50		100		500				

The number system becomes quite complicated when the numbers become large.

Since the way we write numbers comes from the Indians, and then the Arabs, we call it the Hindu-Arabic system. In this system we only have to use these ten numerals: $0,1,2,3,4,5,6,7,8,9$.

These numerals are often known as digits.
The number 37 is a two-digit number, using the two digits 3 and the 7 .
The number 261 is a three-digit number, using the digits 2,6 and 1 .
Zero is an important digit in our number system. In the number 407, for example, the zero shows that there are no tens, and the number does not become confused with 47.

Challenge

Make four numbered cards: $2,3,5,8$
Put any two cards together to make a two-digit number.
It is possible to make 12 different two-digit numbers. Can you find them?
How many different three-digit numbers can you make by choosing three cards from the four?

Patterns and relationships

Extending patterns:
2, 4, 6, 8, _, _
1, 2, 4, 7, _, _, 22

More complex shape sequences:

Copy, continue and describe sequences of numbers relating to the times tables:
8, 16, 24
27, 24, 21

Understand that:
$4+5=5+4$ (commutative property)
$5+4+6=(5+4)+6=5+(4+6)$ (associative property)
$2 \times 6=6 \times 2$ (commutative property)

$$
\begin{array}{lll}
8+4=12 & \text { so } & 4+8=12 \\
12-8=4 & & 12-4=8 \\
& & \\
& & \\
2 \times 10=20 & \text { so } & 10 \times 2=20 \\
20 \div 2=10 & & 20 \div 10=2
\end{array}
$$

Expressions and equations

Find missing numbers in statements where symbols are used for unknown numbers or operators.
$4+?=7$
$9-\square=4$

The equals sign acts like a balance:
$6+\square=8+4$
14-4 $=\square+5$

Use simple function machines for operations like doubling, halving, adding or subtracting.

I understand what these symbols mean:

$$
\begin{array}{ll}
(\text { equals })= & (\text { not equal to }) \\
(\text { less than })< & \text { (greater than })>
\end{array}
$$

Properties of 2D shapes and 3D objects

Names and properties of 3D ob.jects and 2D shapes

Language of 3D objects				
cube	cuboid	cone	cylinder	sphere

		flat faces	curved faces	edges	vertices
(1)	cube	6	0	12	8
\bigcirc	cylinder	2	1	2	0

Language of 2D shapes

triangle	pentagon	hexagon	octagon	quadrilateral	regular
irregular	equal	sides	angles	horizontal	symmetrical

Sort 2D shapes according to various criteria:

$$
\text { fewer than } 4 \text { sides } \quad 4 \text { sides more than } 4 \text { sides }
$$

regular (all sides and angles are equal) \leftrightarrow irregular (sides and angles are not equal)

$$
\begin{gathered}
\text { are quadrilaterals } \leftrightarrow \text { are not quadrilaterals } \\
\text { have } 6 \text { or more sides } \leftrightarrow \text { have fewer than } 6 \text { sides }
\end{gathered}
$$

Angle, symmetry and transformation

Can you: describe follow and record routes and journeys using signs, words and angles; use grid references to locate and describe positions; create and recognise svmmetrical nictures natterns and shanes

position	row	column	Language co-ordinates		grid reference
horizontal/vertical axis	compass directions	North	South		
East	West	whole/half/quarter turn	clockwise/anti-clockwise		

Clockwise and anti-clockwise turns

Lines of symmetry

Comparing and ordering angles

Fold or use a mirror to find lines of symmetry.

Data and analysis

Can you: collect information; organise it logically; make a display by creating tables, charts and diagrams; interpret the information and answer questions.

Language				
Tally marks	bar chart	frequency table	pictogram	graph
axis/axes	horizontal	vertical	title	label
key	display	Carroll diagram	Venn diagram	interpret

Collecting information

Which sport is the most/least popular?
How many more children like football than table tennis?

Favourite Sport				Total
Netball	IIIt	IIII	I	11
Football	IIII	IIII	III	13
Table Tennis	IIIt	IIII		9
	Swimming	III	II	

Pictogram

Carroll diagram

Multiple of 5 Multiolef 5		
$\begin{aligned} & \text { Even } \\ & \text { numbers } \end{aligned}$	602^{30}	$\begin{array}{cc} 22 & 14 \\ 12 & \\ & 38 \end{array}$
$\begin{gathered} \text { yyen } \\ \text { nemers } \end{gathered}$	$\begin{array}{cc} 25 & 35 \\ 5 & \\ & \end{array}$	$\begin{array}{lc} \hline 9 & 31 \\ & 27 \end{array}$

Ideas of chance and uncertainty

Another word for probability is chance. Probability is the measure of how likely something is to happen.

Most people use probability words everyday.

0				
impossible unlikely possible	equally likely	likely	certain	
no chance	poor chance	even chance	good chance	must happen
0%	50%		100%	

If something is just as likely to happen as it is not to happen, you say its probability is an even chance or "evens". You might also call it a "fifty-fifty" chance, eg. if you toss a coin, you're equally likely to get heads as tails.

Coin probability
If you toss a coin there are two possibilities: it could land on heads or tails: you're equally likely to get heads as tails. There is an even chance (1 in
2) of it landing on heads and an even chance of tails.

Dice probability

Dice have six sides, each with a different number of spots on it:
$1,2,3,4,5$, and 6 .

adding	Finding the total number of objects in different groups.
addition (+)	To combine 2 or more numbers to get one number (called the sum or the total) Example: $12+76=88$
$a m$	(ante meridiem) Any time in the morning (between midnight and 12 noon).
angles	Right Angle measures 90°. Acute angle is less than 90°. Obtuse angle is more than 90°.
approximate	An estimated answer, often obtained by rounding to nearest 10, 100 or decimal place.
area	The area is the amount of surface inside the perimeter.
calculate	Find the answer to a problem. It doesn't mean that you must use a calculator!
data	A collection of information (may include facts, numbers or measurements).
decimal number	A number which is partly a whole number and partly a fraction.
decimal point	A point used to separate the whole numbers from the fraction in a decimal number.
denominator	The bottom number in a fraction (the number of parts into which the whole is split).
difference (-)	The amount between two numbers (subtraction). Example: The difference between 50 and 36 is 14: $50-36=14$
digit	A numeral used as part of a number.
division (\div)	Sharing a number into equal parts: $24 \div 6=4$
double	Multiply by 2.
equals (=)	Makes or has the same amount as.
equivalent fractions	Fractions which have the same value. Example $\frac{6}{12}$ and $\frac{1}{2}$ are equivalent fractions.
estimate	To make an approximate or rough answer, often by rounding.
even	A number that is divisible by 2 . Even numbers end with $0,2,4,6$ or 8 .
factor	The factors of a number are those numbers which will divide into it exactly.

fraction	A part of a whole.
greater than (>)	Is bigger or more than. Example: 10 is greater than 6. $10>6$
least	The lowest number in a group (minimum).
less than (<)	Is smaller or lower than. Example: 15 is less than 21. $15<21$
maximum	The largest or highest number in a group.
minimum	The smallest or lowest number in a group.
minus (-)	To subtract.
most	The largest or highest number in a group (maximum).
multiple	A number which can be divided by a particular number, leaving no remainder. Example Some of the multiples of 4 are $8,16,48,72$
multiply (x)	To combine an amount a particular number of times. Example $6 \times 4=24$
numerator	The top number in a fraction.
odd number	A number which is not divisible by 2 . Odd numbers end in $1,3,5,7$ or 9 .
operations	The four basic operations are addition (+), subtraction, (-) multiplication (x) and division (\div).
place value	The value of a digit dependent on its place in the number. Example: in the number 1573 , the 5 has a place value 5 hundred.
pm	(post meridiem) Any time in the afternoon or evening (between 12 noon and midnight).
prime number	A number that has exactly 2 factors (can only be divided by itself and 1). 1 is not a prime number as it only has 1 factor.
product	The answer when two numbers are multiplied together. Example: The product of 5 and 4 is 20.
remainder	The amount left over when dividing a number.
share	To divide into equal groups.
square number	The result of multiplying a number by itself.
subtracting	Taking a number of objects away from a group and counting the number left.
sum	The total of a group of numbers (found by adding).
total	The sum of a group of numbers (found by adding).

Some Useful Resources

Number Lines
$\begin{array}{llllllllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$

\(20 \begin{array}{llllllllllllllllllll}20 \& 21 \& 22 \& 23 \& 24 \& 25 \& 26 \& 27 \& 28 \& 29 \& 30 \& 31 \& 32 \& 33 \& 34 \& 35 \& 36 \& 37 \& 38 \& 39
40\end{array}\)

40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60

60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	1	1

$\begin{array}{lllllllllllllllllllll}80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 & 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100\end{array}$

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99

			100 Square						
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Multiplication Square

| x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
| 3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 |
| 4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 |
| 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
| 6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 |
| 7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 |
| 8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 |
| 9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 |
| 10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |

